Overview of Booster PIP II upgrades and plans

C.Y. Tan
for Proton Source group
PIP II Collaboration Meeting
03 June 2014
50% higher flux than the planned PIP operations which is expected to double present flux level. (4.3e12 protons @15 Hz at the end of PIP I)

30% decrease in space charge tune shift @ 800 MeV.

Longitudinal emittance determined by Recycler slip stacking requirements.

<table>
<thead>
<tr>
<th>Performance Parameter</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle Species</td>
<td>Protons</td>
</tr>
<tr>
<td>Input (H⁺ Beam Energy (Kinetic))</td>
<td>800 MeV</td>
</tr>
<tr>
<td>Output Beam Energy (Kinetic)</td>
<td>8.0 GeV</td>
</tr>
<tr>
<td>Protons per Pulse (injected)</td>
<td>7.0×10¹²</td>
</tr>
<tr>
<td>Protons per Pulse (extracted)</td>
<td>6.4×10¹²</td>
</tr>
<tr>
<td>Beam Pulse Repetition Rate</td>
<td>15 Hz</td>
</tr>
<tr>
<td>RF Frequency (injection)</td>
<td>44.7 MHz</td>
</tr>
<tr>
<td>RF Frequency (extraction)</td>
<td>52.8 MHz</td>
</tr>
<tr>
<td>Injection Time</td>
<td>0.6 msec</td>
</tr>
<tr>
<td>Injection Turns</td>
<td>315</td>
</tr>
<tr>
<td>Beam Emittance (6σ, normalized; $x = y$)</td>
<td>15 mm-mrad</td>
</tr>
<tr>
<td>Laslett Tune Shift at Injection (Gaussian)</td>
<td>-0.34</td>
</tr>
<tr>
<td>Delivered Longitudinal Emittance (97%)</td>
<td>0.08 eV-sec</td>
</tr>
<tr>
<td>Delivered Momentum Spread (97% full height)</td>
<td>12.2 MeV</td>
</tr>
<tr>
<td>Delivered Bunch Length (97% full length)</td>
<td>8.2 nsec</td>
</tr>
</tbody>
</table>
New injection point into Booster

New injection point at L11.
Old injection point at L1
Overview of required R&D

• New injection point at L11.
 • New injection girder.
 • Space charge mitigation: painting.
 • New stripping foil.
 • H^0, H^- absorber

• RF capture
 • capture scheme: paraphasing or direct injection into buckets
 • 2^{nd} harmonic cavities (considered but probably unnecessary).

• Transition crossing
 • RF focusing method.
 • RF focus free method (flattening of RF amplitude)
 • 2^{nd} or 3^{rd} harmonic cavities. (can also be used in RF focusing method)
 • γt jump system
 • requires resurrection/rebuild of old system.
Overview (cont’d)

• Damper upgrades and collimation system
 - Longitudinal quadrupole damping when going through transition.
 - Will require voltage overhead in RF system
 - Longitudinal coupled bunch mode damping at high field.
 - Will require an increase in RF power
 - Transverse dampers for coupled bunch modes.
 - Higher intensity may require more power for kickers.
 - Evaluation of present collimation system w.r.t. expected PIP II loss

• Beam quality at extraction
 - Emittances determined by Recycler admittances.
 - $18 \pi \text{ mm mrad (6 } \sigma \text{ normalized)}$
 - 0.08 eV s (97%)
New injection girder

- Beam can enter either horizontally or vertically.
- A new 3 bump system that can take 800 MeV beam (2x stronger)
- Beam painting to mitigate space charge effects because of longer injection time (0.6 ms)
- Carbon foil for stripping (15 turns vs 315 turns)
 - Lifetime effects.
- New beam absorber for H0 and H$^-$
 - Build inside a gradient magnet.
 - Design new stronger and shorter gradient magnets to make space for an absorber. (Preferred)
For a std. foil thickness 380 μg/cm2 (1.15 μm)
400 MeV -> 99.9% efficiency to protons
800 MeV -> 99.1% efficiency to protons
To match 400 MeV efficiency at 800 MeV foil thickness needs to increase to ~545 μg/cm2

At 800 MeV with 7E12 injected at 15 Hz
Injection power increases to ~ 13 kW.
For a 2% loss -> 260 Watts on downstream gradient magnet.
-> Need to provide injection absorber
Stripping efficiencies at 800 MeV

State Fraction

<table>
<thead>
<tr>
<th>State</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>H+</td>
<td>0.999</td>
</tr>
<tr>
<td>H-</td>
<td>7.00E-09</td>
</tr>
<tr>
<td>n=1,2</td>
<td>8.70E-04</td>
</tr>
<tr>
<td>n=3</td>
<td>6.50E-05</td>
</tr>
<tr>
<td>n > 3</td>
<td>6.50E-05</td>
</tr>
<tr>
<td>total</td>
<td>1</td>
</tr>
</tbody>
</table>

Lifetime 1 GeV Excited States

Field in 4th chicane

Loss rate [per meter] vs. Lorentz Stripping

800 MeV 545 μg/cm²

Strip immediately

Dipole Field, B in [T] vs. stable

800 MeV vs. 400 MeV

Field [kG]

PIII II Collaboration Meeting, June 2014; C.Y. Tan
Vertical Injection Concept

ORB 1-2: 22 mr
ORB 3-4: 33 mr
DC sep: 78 mr

Booster 6 sigma envelope at 800 MeV and 15 ps.

Table: ENVYP

aperture

\(H^- \)

\(H_0 \)
Injection painting for space charge mitigation

Green: injected beam.
Red: phase space after painting.

Beam line matching conditions for two painting scenarios. Left paint in both planes in the ring (SNS) and right paint horizontal in ring and steer (angle mismatch) from beam line (JPARC).

Note: ellipses were calculated for 1GeV injection.
Capture (adiabatic at 800 MeV)

At injection

0.6 ms injection time.
0.4 ms adiabatic ramp to full voltage (1 MV)
Capture (bucket to bucket injection)

Chopping 180 deg

0.6 ms injection time.
Chopping is required to get the correct bunch pattern into the bucket.
2 mA for 0.6 ms gives 7.5e12 particles.
May need flattened front porch for injection

Chopping 120 deg
Transition crossing at 4.2 GeV

More RF for focusing during transition.

~25% more RF implies 3 – 4 more RF cavities using present design.

(22 – 23 cavities)

Example shown here is the compensation of the effect of space charge that is defocusing before transition & focusing after transition.

Increase RF voltage before transition
Increase RF voltage again to damp out quadrupole oscillation.
Perpendicular biased cavities

Simulations of use at injection for PIP I and possible use as main RF cavity is underway.

Units in mm

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gap</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Gap_2</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Imped</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>405</td>
<td>pp</td>
</tr>
<tr>
<td>Linner</td>
<td>L-Gap</td>
<td></td>
</tr>
<tr>
<td>Linner_2</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>L_antenna</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>L_ferr</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>Mu</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>Oe</td>
<td>1600</td>
<td>Magnetization</td>
</tr>
<tr>
<td>Rinner</td>
<td>90/2</td>
<td></td>
</tr>
<tr>
<td>Router</td>
<td>200/2</td>
<td></td>
</tr>
<tr>
<td>Router_2</td>
<td>R_ferr_in-5</td>
<td></td>
</tr>
<tr>
<td>R_antenna</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>R_ferr_in</td>
<td>230/2</td>
<td></td>
</tr>
<tr>
<td>R_ferr_out</td>
<td>380/2</td>
<td></td>
</tr>
</tbody>
</table>

Designed by G. Romanov
Example here: 2nd harmonic cavity
What was done recently

- Measured μ and $Q (\tan \delta)$ *resonantly* with a 1.5” OD sample of AL400: measure f_{res}, then with $c = f \lambda$

$L = 5”$

$\frac{\lambda}{4} = L \times \sqrt{\mu \varepsilon}$

Work done by D. Wildman and R. Madrak
Old (S11) and New (Resonant) Measurements

Effective permeability vs. H_{int}

- resonant meas
- theory curve, valid region
- theory curve, invalid region ($M < M_s$)
- S11, 76 MHz
- S11, 106 MHz

$H_{\text{int}} = H_{\text{sol}} + (N_x - N_z)*4\pi M_s$ (Oe)

Work done by D. Wildman and R. Madrak
Dampers

• Longitudinal coupled bunch and quadrupole mode dampers
 ▪ More RF volts is required whatever scheme is chosen.
 ◆ E.g. Increase the number of RF cavities from 18 to 21 using present design will give ~150 kV.
 ◆ Change from parallel biased cavities to perpendicular biased cavities could potentially increase volts/cavity from ~50 kV to ~60 kV and give 180 kV increase.
 ▪ PIP I is working on improving present cavity design and perpendicular cavity design.

• Transverse and longitudinal dampers
 ▪ PIP I upgrading analog dampers to digital dampers.
Collimators

- PIP I plan is to reinvestigate present collimation operations and issues related to PIP I goals.
 - No upgrade of collimation is presently planned.
Loss requirements

- Historically Booster losses is maintained ≤ 525 W ring wide.
- Independently set beam loss monitor trip points at each long and short straight sections.
- For PIP II
 - Keep ring wide activation at the present level would be recommended
 - Control loss points to be at collimators and beam dump
 - Notching in Linac will help reduce losses. Presently 3 bunches are kicked out => 95% efficient.
 - Ability to keep notch clean after multiple turns
 - Synchronization of Linac and Booster for extraction kickers and notch
Summary

- There is an R&D effort in place. Preliminary work has been started to find solutions to potential problems that we have identified:
 - New injection girder
 - RF capture
 - Transition
 - RF cavities

- Beam quality
 - Determined by keeping instabilities under control.
 - Constrained by Recycler requirements.