
Chapter 4. Beam Dynamics

4.1. Space charge and beam stability

J. Holmes, K.Y. Ng, C. Prior

4.1.1. Tune shifts

The betatron tunes νz, z = x or y, of transverse oscillations of charged particles in the beam
moving with axial velocity v = βc, c being the velocity of light, are mainly determined by
the applied focusing forces due to quadrupoles. With finite beam current the tunes are
shifted, both by direct space charge and by image forces due to induced voltages in the
surrounding structure impedances. At relativistic beam energies, the space charge forces
are strongly reduced by a factor γ−2 = 1 − β2 due to partial compensation of electric and
magnetic forces. However, in the PD2 at 600 MeV injection energy, γ = 1.640 and the
space charge term is largely dominant.

The coherent and incoherent tune shifts of a beam with half width ax and half height ay

consisting of Np protons are [1]
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where rp is the classical radius, Bf is the bunching factor, and R is the mean radius of
the accelerator ring. The coherent Laslett image coefficients ξ1,2z and incoherent Laslett
image coefficients ε1,2z describe the strength of image forces for a particular geometry.
For a rectangular vacuum chamber of total height 2h = 4 in and width 2w = 6 in, the
images coefficients are ξ1x =0.0887, ξ1y =0.5737, ε1x =−ε1y =−0.1617. For the magnet
pole gaps, the geometry of two infinite plates separated by 2g = 4 in covering F = 0.5

of the ring is assumed, giving ε2x = ε2y = −π2/24. Because of multi-turn injection, a
uniform distribution in the transverse directions is assumed for the self-field in the last
term in Eq. (4.2), giving the space charge coefficients εspch,y = ay/(ax+ay) and εspch,x =
a2

y/[ax(ax +ay)]. The tune shifts are calculated at every moment of the ramp cycle and
are plotted in Fig. 4.1. In the computation, the standard rf voltage table has been used,
which assumes a fixed bucket area in the latter part of the ramp 20.3 ms into the cycle. The
bunching factor Bf is computed from the bunch area which is assumed to increase linearly
from 0.05 eV-s just after injection to 0.15 eV-s at extraction. The beam radii are computed
from the 95% normalized emittance εN95% = 40 × 10−6 πm. We see that the bunching
factor, which is also plotted in a different scale, decreases rapidly as the beam is captured
into the rf bucket adiabatically. As a result, the tune shifts assume their maximal values
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Figure 4.1. (color) Coherent and incoherent betatron tune shifts of the PD2.

about 8 ms into the cycle. The coherent tune shifts come from images in the vacuum wall
and they are small. The incoherent tune shifts are dominated by the self-field contributions
which are denoted by νself,x and νself,y in the figure. At their maximal values, we can write

∆νincoh,x =−0.153+0.013=−0.140 , ∆νincoh,y =−0.216−0.018=−0.234 , (4.3)

where the first term in the middle corresponds to self-force contributions and the second
term to image contributions. It is obvious that space charge dominates the incoherent tune
shifts. However, it is well-known that only the coherent tune shifts are responsible for
parametric resonances [2]. Although the space charge self-force does not contribute to the
dipole coherent tune shifts, it contributes to the quadrupole coherent tune shifts. The sym-
metric coherent quadrupole mode will be shifted by 2 × 3

4
of the incoherent dipole shift,

or νquad = 2
[
νdipole − 3

4
|∆νincoh|

]
. Therefore, 2νy is shifted from 2× 7.34 to 2× 7.16 and

2νx is shifted from 2 × 11.70 to 2 × 11.61. With the vertical and horizontal betatron bare
tunes at νy0 = 7.34 and νx0 = 11.7, the equivalent vertical tune νy passes through the
stopbands at 7.33, 7.25 and 7.20, while the equivalent horizontal tune νx passes through
the stopband at 11.67.

4.1.2. Space charge at Injection

The code TRACK-2D, developed in the Rutherford Laboratory in England [3], also in-
cludes transverse space-charge effects, making use of a nonlinear space-charge solver based
on finite elements. The code has been applied to the parameters of the Proton Driver to
study the evolution of particles in transverse phase space. The results are shown in Figs. 4.2
for the transverse plane (x, y). Reading from left to right and top to bottom, each plot shows
a sequence of shots in the first 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 51 revolutions. Al-
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Figure 4.2. (color) Reading from left to right and top to bottom are x-y plots of the injection
beam cross sections at stripping foil at the 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 51
revolutions with the space charge force implemented. The last plot is at the 51 revolutions
with the space charge force turned off. Note that the plots are on different scale. However,
the stripping foil, depicted as a rectangle, should be of the same physical size.
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Figure 4.3. Tune foot-print after injection, showing the tunes of individual particles shifted
by the space charge self-force from the bare values.

though these plots are on different scales, the transverse size of the injected beam can be
inferred by comparison with the size of the stripping foil, which is depicted as a rectangle
in every plot. The last plot is at the 51 revolutions with the space charge force turned off.
It is clear by comparing this plot with the second last one that space charge does blow up
the beam size.

A simulation of the injection was also performed with the transverse space charge force
fully taken into account to determine the transverse locations of the beam particles [4].
The injection painting scheme follows the description in Sec. 7.1. Figure 4.3 shows the
betatron foot-print just after injection. We see that the tunes are shifted from the bare
values of νy0 = 7.34 and νx0 = 11.7 to the foot print that has the spreads of ∆νy ∼ 0.15
and ∆νx ∼ 0.10. The amounts of shifts closely resemble what were predicted in Fig. 4.1.
In Fig. 4.4, the fractional number of particles that have exceeded a certain normalized
emittance. For example, only ∼ 5% full outside 30 × 10−6 πm, and this number becomes
negligibly small at 40 × 10−6 πm.

4.1.3. Single Bunch Instability

Keil-Schnell limit for longitudinal microwave instability is [5]∣∣∣∣∣
Z

‖
0

n

∣∣∣∣∣ <
|η|E0

eβ2Ipk

[
∆E

E0

]2

FWHM

F‖ , (4.4)

where Ipk is the peak current, η is the slip factor, E0 is the nominal beam energy, and
the energy spread ∆E at FWHM is computed according to a parabolic distribution and the
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Figure 4.4. Plot showing the fractional number of particles falling outside a particular
normalized emittance. The lowest curve is for vertical consideration only, the middle is for
horizontal consideration only, and the uppermost one is regardless of vertical or horizontal.

form factor F‖ is near unity for the real and inductive parts of the impedance, but is large for
the capacitive part of the impedance. The stability limit is depicted in Fig. 4.5. Alongside,
is also shown the space charge impedance of the beam inside the rectangular beam pipe,

Z
‖
0

n
= i
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2βγ2

[
1 + 2 ln

(
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πw

2h

)]
, (4.5)

where Z0 ≈ 377 Ω is the free-space impedance and a is the beam radius.

The longitudinal resistive-wall impedance is

Z
‖
0

∣∣∣
wall

= [1 − i sgn(ω)]
ρR

hδs
Fwall
‖ , (4.6)

where δskin is the skin depth for resistivity ρ and F wall
‖ = 0.92698 is a form factor which

takes care of the fact that the beam pipe cross section is rectangular. The beam pipe will
be constructed using Inconel with ρ = 1.29 × 10−6 Ωm. The real or imaginary part of
the resistive-wall impedance amounts to 2.5 Ω at the revolution frequency. Since both the
space charge and resistive-wall impedances are well below the Keil-Schnell limit, the beam
should be stable against longitudinal microwave instability.

The Keil-Schnell-like limit for transverse microwave instability is [6]

|Zx,y
1 | <

4νx,yE0

eβRIpk

[
∆E

E0

]
FWHM

|Sx,y|Fx,y , (4.7)

where the effective chromaticity is Sx,y = ξx,y + (n̂ − [νx,y])η, with ξx,y the chromaticity,
n̂ = n + νI

x,y, n a revolution harmonic, νI
x,y and [νx,y] the integral and decimal parts of the

4 - 5



Figure 4.5. Keil-Schnell limits of longitudinal microwave instabilities for the PD2.

betatron tune. Instability occurs only for slow waves when n̂ > [νx,y]. The form factor
Fx,y depends on the transverse particle distribution, about unity for the real part of the
impedance but is large compared to unity for a space charge dominated impedance. Since
this is a coasting-beam theory, it is applicable only when the wavelength of the perturbation
is much less than twice the total bunch length. In the ramp cycle of this machine, the half
bunch length is τ̂ � 5 ns soon after adiabatic capture. Thus, the perturbation must have
frequency larger than 50 MHz or revolution harmonic n � 100. The slip factor η changes
from −0.3668 at injection to −0.0058 at extraction (using γt = 13.82). The chromaticities
will be negative both horizontally and vertically indicating that Sx,y will not vanish. At
injection, Sx,y ≈ 30 is dominated by the slip-factor part. Near the end of the ramp, however,
Sx,y can be dominated by the chromaticity if the perturbation wavelength is as small as the
bunch length. In other words, we should not expect Sx,y to help much in the stability limit
of Eq. (4.7). With Fx,y|Sx,y| = 1, the stability limits are depicted in Fig. 4.6. We see that,
from injection to extraction, |Zy

1 | < 0.31 to 0.73 MΩ/m |Zx
1 | < 0.49 to 1.20 MΩ/m.

The transverse resistive-wall impedance is

Zx,y
1

∣∣∣
wall

=
2c

h2ω
Z

‖
0
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wall

Fwall
x,y

Fwall
x

, (4.8)

with the form factors F wall
x = 0.40825 and Fwall

y = 0.81979, leading to |Zy
1 | = 0.07 MΩ/m

and |Zx
1 | = 0.14 MΩ/m at the revolution frequency. These are small compared with

Eq. (4.7). On the other hand, the space charge contributions are Zy
1 = i54 to i7.3 MΩ/m

and Zx
1 = i70 to i7.6 MΩ/m from injection to extraction, much larger than the limits quoted

in Eq. (4.7). However, reactive impedance will not lead to instability if the resistive part
can be controlled.
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Figure 4.6. Keil-Schnell-like limits of transverse microwave instabilities for the PD2.

4.1.4. Coupled-bunch Instability

The resistive-wall impedance can drive transverse coupled-bunch instability with a growth
rate

1

τx,y
µ

≈ eMIbc

4πνx,yE0
Re Zx,y

1 (νc
x,yω0)F , (4.9)

where the form factor is F ∼ 0.811 if sinusoidal modes are assumed and the instabil-
ity is worst at injection. For νy = 7.34, [νy] = 0.34, νc

x,y = [νx,y] − 1 = −0.66 and
Re Zx,y

1 (νc
yω0) = −0.088 MΩ/m. The growth rate is 302 s−1 or growth time 3.30 ms or

1660 turns. This instability is hard to damp with chromaticity since |η| = 0.3668 at in-
jection is not small. For example, with ξy = −20 and full bunch length τL = 10 ns,
ωξτL/π = 2f0ξyτL/|η| = 0.55 and the form factor is reduced by only ∼ 5%. To damp this
instability, one may need octupoles and/or a mode damper.

Coupled-bunch instabilities, longitudinal or transverse, driven by the higher-order modes
of the rf cavities are quite different. This is because resonances from cavities have fixed
frequencies. Since revolution frequency changes fast during ramping, these resonances
will move through the revolution harmonics. In other words, a coupled-mode is driven for
only a short time. Thus there will not be any growth at the early part of the cycle. For
the driving frequency fr = ωr/(2π), define the resonant harmonic nr = fr/(βf∞) where
f∞ = c/(2πR). The drift rate at the harmonic nr is β̇nrf∞. The time required to drift
through the HWHM of the resonance with quality factor Q is

∆t =
2β

β̇Q
=

2γ3β2

Qγ̇
, (4.10)
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Figure 4.7. Time for a higher-order resonance of fixed frequency to drift through a har-
monic line of the PD2.

implying that any coupled-bunch growth time � ∆t cannot materialize. This is plotted in
Fig. 4.7 for the situation of Q = 5000. Any coupled-bunch instabilities that occur dur-
ing the latter part of the cycle will have similar behavior as those observed in the present
booster; of course the growth rate will be faster. At this part of the cycle, the energy of the
beam is much larger making the growth rates smaller. Since these couplings occur at high
frequencies, the form factor drops as the bunch length increases; for example, at angular
driving frequency ωr, F ∼ e−(ωrστ )2 for a Gaussian distribution with rms bunch length στ .

4.2. Longitudinal Dynamics

James MacLachlan

The rf systems and longitudinal dynamics of the 8 GeV Proton Driver (PD2) relate most
closely to the Phase I, Stage 1 description of the previous Proton Driver Design Study. Be-
cause of the smaller size and drastic change in lattice for the 8 GeV machine, however, few
specific parameters carry over. Nonetheless, the design concepts are similar. The present
study is like an addendum to the PD1 Design Study; what follows builds on Ch. 5. In com-
mon with the previous design, modified Booster cavities and a 15 Hz sinusoidal magnet
ramp with a second harmonic are used. The usefulness of an inductive insert for space
charge compensation remains an attractive but less crucial speculation. The parameters
governing the longitudinal dynamics are summarized in Table 4.1.

Proton Driver 2 is fundamentally a high intensity injector or super booster for the MI.
Accordingly, the use of modified Booster rf cavities is much less of a limitation than for
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Table 4.1. 8 GeV Proton Driver specifications important for the rf design.
Einj injection kinetic energy 600 MeV

beam intensity 2.5 × 1013 p/cycle
cycle repetition rate 15 Hz

Eext extraction kinetic energy 8 GeV
Req mean radius of equilibrium orbit 75.471 m
frf accelerating cavity frequency 42 – 53 MHz
h harmonic number 84

number of populated buckets (at extraction) 81
V̂rf maximum rf voltage 1.05 MV

number of rf cavities 20
ε� 95 % norm. longitudinal emittance (at extraction) 0.2 eVs

bunch intensity 3 × 1011

rms bunch length (at extraction) 1 ns
∆Einj energy spread at injection ±0.25 MeV
α◦ momentum compaction 5.251× 10−3

α1 coefficient of (∆p)2 in path length −8.46× 10−3

g geometric factor for space charge 2.05
Z‖/n high frequency broadband longitudinal impedance (estimate) 2 Ohm

momentum acceptance ±1%

the Phase 1, Stage 1 of the previous proposal. For example, a pure sinusoidal ramp is a cost
saving option if the cavity count can be raised from 20 to 22. Also, inductive inserts are
not necessary to achieve low losses.

Losses and emittance growth have been evaluated for three ramp options, a pure sinu-
soidal ramp like the present Booster and two using 12.5 % addition of second harmonic to
reduce the maximum ṗ (rate of change of momentum). One variant minimizes ṗ early in
the cycle; it is called here a “minimum ṗ ramp” although partly it postpones the peak ṗ.
The ramp which is called “minimum rf power” has a higher slope early in the cycle where
the rf voltage is limited by tuner performance but has a lower maximum rf power. The ṗ
curves are plotted in Fig.4.8. In every case the maximum rf voltage has been limited to 1.05
MV; the twenty modified Booster cavities are expected to make this voltage, but the current
capability is marginal for a pure sine ramp. Additional cavities are desirable to provide for
reliable, stable operation.

The capture phase of the cycle is common to the three ramp variants. It has been opti-
mized with perfectly conducting wall space charge taken into account with no other source
of longitudinal impedance. Given that generally other Z‖ is likely to have an inductive
component, this condition is probably worst case for capture. Very small reduction in rf
voltage in the first 5 ms produces significant losses; so the voltage specified includes little
or no safety margin for operational variability. Practically some margin will be needed; if
studies establish that an inductive insert is otherwise benign, a substantial safety margin
for capture can be obtained inexpensively in this way. However, it is also possible that the
modified cavities will provide sufficient voltage to cover reasonable operational variability.
Failing positive results on both inductive insert and cavity gradient, another pair of cavities
would be prudent.
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Figure 4.8. (color) Rate of change of momentum ṗ [GeV/c/s] vs. time [s] for three ramp
variants: pure sinusoidal ramp, ramp with second 12.5 % second harmonic phased for least
ṗmax, ramp with 12.5 % second harmonic phased for least peak rf power.

Table 4.2 summarizes the basic results. Any of the quoted losses and final emittances
would be acceptable if actually achieved, but the modeling is too idealized to support such
an expectation. Rather one notes by comparison such details as the the tendency of the
minimum rf power ramp toward higher loss because of faster ramp early in the cycle.
Despite the clear appeal of the minimum rf power ramp, in an optimized design a different
choice might be made based on a detailed tradeoff on RF power required and the frequency
at which the peak power is required. Postponing the higher slope until later in the cycle
may turn out to be beneficial because of better tuner performance at higher frequency. The
rms and 95 % emittances at extraction don’t appear to correlate closely. The rms values
are more solid because the 95 % values are disproportionately affected by scraping with
whatever loss there is and furthermore are not evaluated very precisely. However, all of the
95 % values have better than ten percent precision and exceed the Table 4.1 specification.

With respect to anticipated instabilities, the considerations of the PD1 Design Study

Table 4.2. Performance on variant ramps.
Ramp type → sine ramp minimum ṗ min. rf power

max. rate of momentum change [GeV/c/s] 361.4 329.9 278.8
accelerating voltage at ṗmax [MV] 0.93 0.78 0.99
synchronous phase at ṗmax [deg] 38 42 26
rf accelerating power at ṗmax [MW] 1.4 1.3 1.1
95% longitudinal emittance at extraction [eVs] 0.07 0.10 0.08
rms longitudinal emittance at extraction [eVs] 0.0078 0.0077 0.0107
loss (all below 1.2 GeV) < 0.1 % 0.0 0.6 %
loss with inductive insert 0.0 % 0.0 % 0.0 %
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remain generally relevant; however, the design beam current is 25 % higher because of
the reduced circumference even though the number of protons has been reduced by 17 %.
Controlling longitudinal coupled bunch instability will require not only a concerted effort
on higher order mode suppression in the cavities but at least some level of active damping.

4.2.1. Extraction and Bunch rotation

The longitudinal matching of PD2 to the MI is practically the same as for the current
Booster-MI transfer. About 90 kV in the PD matches a 0.8 eVs bucket generated by 1 MV
or so in the MI. This bucket sounds a bit large, but it can not be reduced by much and still
provide control and acceptable bucket shape distortion; it can be reduced a little if desired
on the MI ramp.

Bunch rotation is not so important in PD2 as it was for the original Proton Driver design
for two reasons. First of all, the momentum acceptance of the PD2 ring is only 40 % of
the original, so path length dependence on momentum is less serious. It is accounted for
to the first order correction in ∆p/p. On the other hand, with advertised dynamic aperture
of 250 π, path length dependence on betatron amplitude may be significant. This has not
been accounted for in either study. Bunch rotation is also less important programmatically
in the absence of a neutrino factory or µ storage ring. Neutrino beam users might make
good use of tighter timing for gating and TOF discrimination. The result of a rotation on
the ramp is shown in Fig. 4.9; the nonlinearity of the rotation is evident in the C-shaped
bunch instead of the classic S and also in the up-down asymmetry of the bucket. However,
the rms bunch width is only 0.2 ns with the rather reasonable symmetry about the mean
shown in Fig. 4.10.
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Figure 4.9. The phase space distribution of a bunch rotated with 1 MV of rf at the end of
the minimum ṗ ramp. The horizontal axis on this plot is just under 19 ns long; the units are
h = 1 phase in degrees and energy in MeV. The momentum spread is about ±0.8 %.

Figure 4.10. The bunch length profile plotted against h=1 phase in degrees; the horizontal
axis corresponds to 1.9 ns.
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